入試問題研究 第138回 関西大学 ③-2 気体の変化(一部改作)

次の文章の空欄に適当な数字、語句を入れなさい。 ※本物は選択肢が付いている

下の表には3箇所の欠落部分があるが、表には6種類の気体の 15° C における分子1個の平均の速さ(2乗平均速度という) $\sqrt{v^2}$ [m/s] の2乗の値と、2種類のモル比熱を単位 [J/(mol·K)] で、分子量の小さい順に並べたものである。

分子		分子量	平均の速さの2乗	[Y]モル比熱	[Z]モル比熱	
水	素	2	$3.6 imes 10^6$	28.7	20.3	
ヘリ	ウム	4	$1.7 imes 10^6$	20.8	12.5	
ネス	トン	20	$3.6 imes 10^{5}$	20.8	12.4	
窒	素	28	$2.6 imes 10^{5}$	29.0	20.6	
酸	素	32	$2.2 imes 10^5$	29.4	21.2	
アル	ゴン	40	[X]	20.8	12.5	

これら6種類の気体を理想気体とみなすと、表から次のことが読み取れる。

(A) ヘリウムとネオンに関っ	するデータから類推して、	欠落部 [X] には数	数値 ①	×10 ⁵ が入る
ものと考えられる。				

(B) 44°C での酸素分子の平均の速さの2乗は ② ×10 ⁵ が入る
--

(C)	水素分子の平均の速さの2乗からは、ボルツマン定数の値は	(3)	×10 ⁻²³ .I	/K とかろ
(\cup)	小糸刀丁の十段の座での2米かりは、かんノマン足数の胆は	\odot	\10 \ \	$/ \mathbf{K} \subset \mathcal{A} \mathcal{A}_{0}$

				_			
(D)	欠落部分	[Y] には	4	が、欠落部分	[Z] には	(5)	が入る。

(E)	6種類の気体は2つに分類されるが、この分類は分子に	6	のエネルギーなどがある
	か、ないかによるものと見られる。		

(F)	2つに	分类	頁された気体の両方に共通しているのは 、2 5	種類の	モル比熱の値から分かるよう
	に、(7	がほぼ同じ値をとることである。このことは	8	が一定のもとでの理想気体の
	9	の変	変化は気体の種類には関係しないことを示し	ている	ると見てよい。

(G)	窒素ガスを滑らかに動くピストンのついたシリンダー内に閉じ込めたところ	、内部の圧力は
	1.0×10 ⁵ Pa であった。	

圧力をそのままの値に保つように加熱した結果、体積は 0.80×10^{-3} m^3 だけ増加した。この場合、窒素に関するデータから、気体に与えた熱量は $\boxed{0}$ $\times10^2$ J であることが分かる。

入試問題研究 第 138 回 関西大学 ③-2 気体の変化(一部改作) 解答·解説

- ※ 気体の分子運動論を良く理解しておれば、この問題が何を言いたいかが見えてくる。 気体の分子運動論を理解していない人は、文章の指示にしたがって類推するしかない。
- ※ ヘリウム、ネオン、アルゴンのグループと、水素、窒素、酸素のグループの2つのグループに分類できることに気付くこと。これは、「単原子分子」か「2原子分子」のグループ分けである。

2原子分子のときは、回転運動のエネルギーが追加されるのでモル比熱はその分だけ大きくなる。

- ightarrow 分子当たり、並進運動のエネルギーが $rac{3}{2}\,k\,T$ 、回転運動のエネルギーが $k\,T$ が必要!
- (A) 「平均の速さの2乗が分子量の反比例している」と、表の数値から、読み取れるか?分子量が M のとき、分子運動論からは

$$\frac{1}{2} \frac{M}{1000 \, N_A} v^2 = \frac{3}{2} k \, T$$

分	子	分子量	平均の速さの2乗	[Y]モル比熱	[Z]モル比熱
水	素	2	$3.6 imes 10^6$	28.7	20.3
ヘリ	ウム	4	$1.7 imes 10^6$	20.8	12.5
ネオ	ン	20	$3.6 imes 10^5$	20.8	12.4
窒	素	28	$2.6 imes 10^{5}$	29.0	20.6
酸	素	32	$2.2 imes 10^{5}$	29.4	21.2
アル	ゴン	40	[X]	20.8	12.5

(k はボルツマン定数)!

[X] には 1.7(ヘリウムから)~1.8(ネオンから)・・・① が入るものと考えられる。

- (B) 2原子分子のグループでは、 $\frac{1}{2}\frac{M}{1000\,N_A}v^2 = \frac{3}{2}k\,T$ だから、分子の平均の速さの 2乗は 絶対温度に比例するので $2.42..\times10^5$ になる。よって、 $2.4\cdots2$ が入る。
- (C) $\frac{1}{2} \frac{M}{1000 N_A} v^2 = \frac{3}{2} k T$ に代入すると、 $\frac{1}{2} \times \frac{2.0}{1000 \times 6.0 \times 10^{23}} \times 3.6 \times 10^6 = \frac{3}{2} \times k \times 288$ より、ボルツマン定数の値は 8.3×10^{-23} J/K だから、 $1.4 \cdots$ ③ となる。
- (D) 小さい方が定積モル比熱であるから、欠落部分 [Y] には「定圧」・・・④が、欠落部分 [Z] には「定積」・・・⑤が入る。
- (E) 2つに分類される基準は、分子に「回転運動」・・・⑥のエネルギーなどがあるか、ないかによる。回転エネルギーについて、単原子分子は考慮する必要はないが、2原子分子は回転エネルギーを考慮する必要がある。
- (F) 2つに分類された気体に共通しているのは、「定圧モル比熱と定積モル比熱の差」・・・⑦がほぼ同じ値(8.3 J 前後)をとることである。このことは「圧力」・・・⑧が一定のもとでの理想気体の「体積」・・・⑨の変化は気体の種類には関係しないことを示している。これは、シャルルの法則が成り立つということと同義である。
- (G) 窒素ガスをの圧力は 1.0×10^5 Pa をそのままの値に保つように加熱した結果、体積は 0.80×10^{-3} m³ だけ増加した。公式 $W=p\Delta V$ より、気体がした仕事は 80 J である。 同じ温度変化の場合、「定圧変化のときと定積変化のときの熱量の差」が気体がした仕事に 相当する。よって $80=(29.0-20.6)\Delta T$ だから、温度変化は $\Delta T=9.52...$ である。 定圧 変化より $Q=nc_V\Delta T$ だから熱量は 276 J 必要になる。よって、 $2.8\cdots 0$ である。