入試問題研究 第67回 奈良女子大学 ① ばねとおもりの運動 (改)

天井からつるしてある質量を無視できるばねに、質量 m のおもりをつけ、表面が滑らかな板で下から支えてばねを自然長に保つ。この状態から、板を鉛直方向にゆっくりと下げていく場合と、板を瞬間的に取り除く場合について考えてみる。ばね定数を k 、重力加速度を g として以下の問いに答えよ。

- 問1 板を鉛直方向にゆっくりと下げてゆく場合を考える。
 - (1) 板がおもりを下から押す力を N とし、ばねの自然長からの伸びを x としたとき、おもりに働く 力のつりあいを式で示せ。
 - (2) 板がおもりから離れるときのばねの伸び x を求めよ。
 - (3) ※ ばねがおもりにした仕事を求めなさい。
 - (4) ※ 板がおもりにした仕事を求めなさい。
- 問2 板を瞬間的に取り除いた場合を考える。
 - (1) ばねの伸びが x のとき、おもりの速度が v であるとする。おもりの運動エネルギー、おもりの 重力による位置エネルギー、ばねの弾性力による位置エネルギーを記せ。
 - (2) 力学的エネルギー保存の法則を用いて、ばねの伸びの最大値を求めよ。
 - (3) おもりの速さが最大になるときのばねの伸びを求めよ。

板を瞬間的に取り除いた時刻を t=0 として、おもりの運動を数式で表すことを考える。

- (4)^{*} ばねの伸び x を t を含む式で示せ。
- (5)*おもりの速度 v を t を含む式で示せ。

問3 板を鉛直方向にゆっくりと下げてゆく場合と、板を瞬間的に取り除く場合では、ばねの伸びの最大値が異なるが、なぜそのような違いが生じるのか説明せよ。

入試問題研究 第67回 奈良女子大学 ① ばねとおもりの運動 (改)

- 問1 板を鉛直方向にゆっくりと下げてゆく場合を考える。
 - (1) mg=N+kx ※ 下向きが重力、上向きがばねの力と板からの垂直抗力!
 - (2) 板がおもりから離れるとき、板がおもりを押す力がゼロになる。また、このときのばねの伸びを x_0 とすると、(1)に代入して $mg=kx_0$ より、ばねの伸び x は $x_0=\frac{mg}{k}$ である。
 - (3)* ばねがおもりにした仕事 W_1 と、おもりがばねにした仕事 (ばねに蓄えられているエネルギーの変化) $\frac{1}{2}k\Big(\frac{mg}{k}\Big)^2$ の和はゼロになる。よって、 $W_1+\frac{1}{2}k\Big(\frac{mg}{k}\Big)^2=0$ であるから、ばねがおもりにした仕事は $-\frac{m^2g^2}{2k}$ である。 ** 数学を利用して $W=\int_0^{\frac{mg}{k}}(-kx)dx$ で求めても良い!
 - (4)* ばねがおもりにした仕事 $W_1 = -\frac{m^2g^2}{2k}$ と、板がおもりにした仕事 W_2 により、重力による位置エネルギーの変化 $mg \times \left(-\frac{mg}{k}\right)$ が等しくなり $W_1 + W_2 = -\frac{m^2g^2}{k}$ が成立するから、板がおもりにした仕事は $W_2 = -\frac{m^2g^2}{2k}$ である。* 垂直抗力は N = kx mg だから、(3) と同様に積分 $W_2 = \int_0^{\frac{mg}{k}} (kx mg) dx$ より求めても良い!

間2 板を瞬間的に取り除いた場合を考える。

- (1) ばねの伸びが x のとき、おもりの速度が v とすると、おもりの運動エネルギーは $\frac{1}{2}mv^2$ 、 おもりの重力による位置エネルギー -mgx 、ばねの弾性力による位置エネルギー $\frac{1}{2}kx^2$ である。
- (2) 力学的エネルギー保存の法則より、 $0=-mgx+\frac{1}{2}mv^2+\frac{1}{2}kx^2$ が成立する。ばねの伸び のとき、おもりの速度はゼロだから、 $0=-mgx+\frac{1}{2}kx^2$ より、 $x=\frac{2mg}{k}$ である。
- (3) (2) より、 $\frac{1}{2}mv^2 = mgx \frac{1}{2}kx^2$ だから、 $\frac{1}{2}mv^2 = -\frac{1}{2}k\left(x \frac{mg}{k}\right)^2 + \frac{m^2g^2}{2k}$ だから、おもりの速さが最大になるときのばねの伸びは $x = \frac{mg}{k}$ である。

板を瞬間的に取り除いた時刻を t=0 として、おもりの運動を数式で表すことを考える。

(4)**この単振動は、ばねの伸びが $x=\frac{mg}{k}$ の位置を中心とし、振幅 $\frac{mg}{k}$ 、角振動数 $\sqrt{\frac{k}{m}}$ であり、時刻ゼロとき、ばねの伸び x=0 だから、初期位相 $\frac{3\pi}{2}$ の単振動。よって、ばねの伸びは $x=\frac{mg}{k}+\frac{mg}{k}\sin\left(\sqrt{\frac{k}{m}}\cdot t+\frac{3\pi}{2}\right)$ になり、整理して $x=\frac{mg}{k}\left(1-\cos\sqrt{\frac{k}{m}}\cdot t\right)$ である。

(5)**(4)を微分して、おもりの速度を求めれば簡単だ。よって、 $v=g\sqrt{\frac{m}{k}}\cdot\sin\sqrt{\frac{k}{m}}t$ である。

問3 板をゆっくりと下げる場合、板からの力(外力)が加わり、外力がする仕事が負(問1(4))になる。そのため系の力学的エネルギーが減少するので、ばねの最大の伸びが小さくなってしまう。